Newsletter

Miniatury matematyczne 77

Bobiński Zbigniew , Nodzyński Piotr , Uscki Mirosław
Am Lager
Dostępne ponad 10 sztuk.
€6,05
€5,70
Dostawa Deutche Post tylko 1.40€.
Szybki kurier do 30kg tylko - 4€!
(Sprawdź!)

lub
Najniższa cena z ostatnich 30 dni: €5,46
Pospiesz się! Obecna cena jest korzystna. W tej cenie mamy ograniczoną liczbę egzemplarzy.
W kolejnej miniaturze powracamy do rozważań związanych z polem figury. Nie będziemy badali wzorów na pola poszczególnych wielokątów. Problem ten jest trudny, między innymi ze względu na wczesny etap matematycznej nauki. Z tego powodu zajmiemy się porównywaniem pól wielokątów. Oczywiście nie będziemy zajmować się pogłębioną analizą samego pojęcia pola. Potraktujemy je w naturalnym i nieco intuicyjnym rozumieniu, tak jak to czyni się w trakcie początkowej nauki szkolnej matematyki. Zajmiemy się szczególnie polem wielokąta, głównie problemami wynikającymi ze słynnego twierdzenia Farkasa Bolyaia i Paula Gerwiena, które odkryli niezależnie w roku 1833.

Jeżeli dwa wielokąty mają równe pola, to zawsze można jeden w nich podzielić na skończoną liczbę takich wielokątów, aby z nich można było ułożyć drugi wielokąt.

Twierdzenie to pozwala porównywać pola wielokątów bez obliczania tych pól. Warto zauważyć, że aby stwierdzić, że dwa wielokąty mają równe pola, wystarczy podzielić każdy z tych wielokątów na mniejsze wielokąty, tak by każdy z tych podziałów miał tyle samo elementów i by każdy wielokąt jednego podziału można nałożyć na pewien wielokąt drugiego podziału, tak by się pokrywały i by te wielokąty w parach wyczerpywały wszystkie wielokąty w obydwu podziałach.

Oznacza to, iż wziąwszy na przykład kwadrat wraz z danym jego podziałem możemy opisywać wielokąty o tym samym polu, dla których istnieje podział złożony z takich samych wielokątów jak podział kwadratu. Czasami te problemy pojawiają się w zadaniach zabawowych, chociaż wcale technicznie niełatwych, przykładem takich problemów są tangramy Będziemy rozważać wielokąty, przeważnie w miarę proste, wraz
z ich podziałem i starać się będziemy opisywać wielokąty mające taki sam podział. Zwracamy uwagę na fakt, iż w początkowym etapie nauki matematyki przy wyprowadzaniu wzorów na pola nieco bardziej złożonych wielokątów korzystaliśmy z metody podziału takich wielokątów na mniejsze wielokąty i składaliśmy z nich wcześniej poznane wielokąty. Warto więc przećwiczyć tę metodę na bardziej skomplikowanych przykładach, tym bardziej że z podobnymi problemami spotykamy się na wielu konkursach matematycznych. Często układane wielokąty z elementów danego podziału przypominają figury lub postacie spotykane w innych sytuacjach – postacie zwierząt, litery, figury szachowe itp – wówczas nie podkreślamy tego, że budujemy wielokąty. Podobnie w odpowiedziach i w rozwiązaniach zadań nie staramy się za każdym razem zachowywać wymiarów poszczególnych elementów podziału, głównie zwracamy uwagę na kształt otrzymywanych wielokątów, chociaż powinniśmy budować wielokąty o danym polu W odpowiedziach i rozwiązaniach, szczególnie w rozdziałach II oraz III, często nie uzasadniamy poprawności odpowiedzi tzn. czy posiadają one żądane własności. Ograniczamy się tylko do manualnego sprawdzenia spełnienia warunków rozwiązania.

Na końcu miniatury dodajemy szereg kartek z umieszczonymi na nich wielokątami, które wcześniej spotkaliśmy w omawianych zadaniach Proponujemy Czytelnikowi sprawdzenie przy ich pomocy prawdziwości zamieszczonych odpowiedzi i być może poszukanie innych rozwiązań tych zadań.

Książka Miniatury matematyczne 77 wysyłka Niemiecy od 1.40€. Wysyłka do Austrii i innych krajów - sprawdź na stronie "dostawa"

Dane bibliograficzne / Bibliographische info
Rodzaj (nośnik) / Produkt-Typ Buch auf Polnish
Dział / Departement Książki i czasopisma / Bücher und Zeitschriften
Autor / Author Bobiński Zbigniew , Nodzyński Piotr , Uscki Mirosław
Tytuł / Titel Miniatury matematyczne 77
Język / Sprache polski / polnisch
Wydawca / Herausgeber Aksjomat Piotr Nodzyński
Rok wydania / Erscheinungsjahr 2022
Języki oryginału / Ursprüngliche Sprachen polski
Rodzaj oprawy / Deckelform Miękka
Wymiary / Größe 16.3x24.0
Liczba stron / Seiten 72
Ciężar / Gewicht 0,158 kg
   
Wydano / Veröffentlicht am 24.06.2022
ISBN 9788366838147 (9788366838147)
EAN/UPC 9788366838147
Stan produktu / Zustand Neue Bücher - wir verkaufen nur neue Bücher auf Polnisch.



Zapraszamy do zakupu tego produktu.